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We present a scheme to conditionally engineer an optical quantum system via continuous-variable measure-
ments. This scheme yields high-fidelity squeezed single photons and a superposition of coherent states, from
input single- and two-photon Fock states, respectively. The input Fock state is interacted with an ancilla
squeezed vacuum state using a beam splitter. We transform the quantum system by postselecting on the
continuous-observable measurement outcome of the ancilla state. We experimentally demonstrate the prin-
ciples of this scheme using coherent states and experimentally measure fidelities that are only achievable using
quantum resources.
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INTRODUCTION

The transformation or engineering of quantum states via a
measurement-induced conditional evolution is an important
technique for discrete variable systems, particularly in the
field of quantum information �1�. Typically, the quantum sys-
tem of interest interacts with a prepared ancilla state, which
is then measured in a particular basis. The system state is
retained, or discarded, depending on the measurement out-
come, resulting in the controlled conditional evolution of the
quantum system. It is a necessary condition for inducing a
nontrivial conditional evolution that the interaction of the
ancilla and system produces an entanglement between them.

In optical systems, highly nonlinear evolutions, which are
difficult to induce directly, can be induced conditionally on
systems by postselecting on particular photon counting out-
comes �2�. In principle, a near deterministic, universal set of
unitary transformations can be induced on optical qubits in
this way �3�. Importantly, it was shown that arbitrary optical
states can be engineered conditionally, based on discrete
single-photon measurements �4�.

Recently, there has been an increased interest in condi-
tional evolution based on continuous-variable measurements
�5–7�. In these schemes a quantum system interacts with a
prepared ancilla, which is measured via a continuous observ-
able, e.g., the amplitude or phase quadratures of the electro-
magnetic field. This has been experimentally demonstrated
for a system using a beam splitter as the interaction and a
vacuum state as the ancilla, with conditioning based on ho-
modyne detection �6�. A similar system using the condition-
ing of the adaptive phase measurements has also been stud-
ied �7�.

In this paper, we investigate a continuous-variable condi-
tioning scheme based on a beam-splitter interaction, homo-
dyne detection, and an ancilla squeezed vacuum state. We
theoretically show that for input one- and two-photon Fock
states, this scheme yields high-fidelity squeezed single-
photon Fock states and a superposition of coherent states
�SCS�, respectively, which are highly nonclassical and inter-
esting quantum states that have potentially useful applica-
tions in quantum information processing �8�. We experimen-
tally demonstrate the principles of this scheme using input

displaced coherent states, and measure experimental fideli-
ties that are only achievable using quantum resources.

THEORY

The squeezed vacuum ancilla state used in our scheme is

represented as Ŝ�s��0� with the squeezing operator Ŝ�s�
=exp�−�s /2��â2− â†2��, where s is the squeezing parameter
and â is the annihilation operator. The Wigner function of the
squeezed vacuum is Wsqz�� ;s�=2 exp�−2��+�2e−2s

−2��−�2e2s� /�, where �=�++ i�− with real quadrature vari-
ables �+ and �−. The first step of our transformation protocol
is to interfere the input field with the ancilla state on a beam

splitter as shown in Fig. 1�a�. The beam-splitter operator B̂

acting on modes a and b is represented as B̂���=exp��� /2�
��â†b̂− b̂†â��, where the reflectivity is defined as R
=sin2�� /2� and T=1−R. A homodyne measurement is per-
formed on the amplitude quadrature on the reflected field
mode, with the measurement result denoted as Xr

+. The trans-
mitted state is postselected for �Xr

+��x0, where the postselec-
tion threshold x0 is determined by the required fidelity be-
tween the output state and the ideal target state.

FIG. 1. �Color online� �a� Schematic of the postselection proto-

col. X̂in
± : amplitude ��� and phase ��� quadratures of the input state;

�anc� ancilla state; �r� reflected; �t� transmitted; and �out� postse-
lected output state. R: beam-splitter reflectivity; GD: gate detector;
PS: postselection protocol. �b� Standard deviation contours of the
Wigner functions of an input coherent state �blue� and postselected
output states �green� for R=0.75 and varying ancilla state squeezing
of �i� s=0, �ii� s=0.35, �iii� s=0.69, �iv� s=1.03, and �v� ideal
squeezing.
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We first consider a single-photon state input, �1�, and a

squeezed single photon, Ŝ�s���1�, as the target state. The
Wigner function of the single-photon state is Win

�1����
=2 exp�−2���2��4���2−1� /�. After interference via the
beam splitter, the resulting two-mode state becomes
W�� ,��=Win

�1���T�+�R��Wanc�−�R�+�T��, where Wanc

=Wsqz�� ;s� and �=�++ i�−. The transmitted state after the
homodyne detection of the reflected state is Wout�� ;Xr

+�
= P1�Xr

+�−1�−	
	 d�−W�� ,�+=Xr

+ ,�−�, where the normalization
parameter is P1�Xr

+�=�−	
	 d2�d�−W�� ,�+=Xr

+ ,�−�. If the
measurement result is Xr

+=0, the Wigner function of the out-
put state becomes

Wout��� =
2

�
e−2�e−2s���+�2+e2s���−�2�

� �4e−2s���+�2 + 4e2s���−�2 − 1� , �1�

where s�=−ln��T+e−2sR�2� /4. One can immediately notice
that the output state in Eq. �1� is exactly the Wigner function

of a squeezed single photon, Ŝ�s���1�. We note that the output
squeezing s� can be arbitrarily close to the squeezing of the
ancilla state s by making R close to zero. For the nonzero
postselection threshold criteria �Xr

+��x0, the corresponding
success probability is given by Ps�x0�=�−x0

x0 dXr
+P1�Xr

+�.
We calculate the fidelity between the output state �with

the measurement result Xr
+� and the ideal target state given by

F1�Xr
+�=��−	

	 d2� Wout�� ;Xr
+�Wout���. From this we can de-

termine the average fidelity for the threshold x0 defined as

Fave�x0�=�−x0

x0 dxP1�Xr
+�F1�Xr

+� /�−x0

x0 dX̃r
+P1�X̃r

+�. We use this
average fidelity measure to characterize the efficacy of our
protocol for nonzero thresholds. We can likewise determine
the average Wigner function Wave�� ;x0� for the threshold x0.

Figure 2�a� shows the average fidelity Fave for the varying

postselection threshold x0. This figure illustrates that high-
fidelity squeezed single-photon states can be produced using
experimentally realizable squeezing of the ancilla state and
finite thresholds. The average Wigner function corresponding
to an average fidelity Fave=0.99 is shown in Fig. 2�b�. We
point out that postselection around Xr

+=0 preserves the non-
Gaussian features of the input state. Our scheme enables one
to perform the squeezing of a single photon with high fideli-
ties using any finite degree of squeezing of the ancilla state.
This squeezed single-photon state is a good approximation to
an odd SCS, which has applications in quantum information
processing �8�. We emphasize that this interesting result can-
not be achieved by continuous electro-optic feed-forward
methods �10� with finite ancilla state squeezing.

Another example of our postselection protocol is for the
case of input two-photon Fock states, �2�. In this case, our
target state is an even SCS, �
�+ �−
� �unnormalized�, where
�
� is a coherent state of amplitude 
=
++ i
−. The Wigner
representation of the SCS is

Wscs��� = N1�e−2�� − 
�2 + e−2�� + 
�2

+ e−2�
�2�e−2�� + 
�*��−
� + e−2��+
��� − 
�*
�� , �2�

where N1= ���1+e−2�
�2��−1. For an input two-photon Fock
state, the fidelity between the postselected output state �with
the measurement result Xr

+� and the ideal SCS target state is
F2�Xr

+�=��−	
	 d2� Wout�� ;Xr

+�Wscs���. From this expression,
the average fidelity Fave and the average Wigner function
Wave for a postselection threshold x0 can be calculated. Fig-
ure 3 shows the average fidelity of the output state for the
varying threshold, which illustrates that high-fidelity SCS
can be obtained with experimentally realizable ancilla state
squeezing and finite thresholds. The average Wigner function
corresponding to an average fidelity of Fave=0.99 is shown
in Fig. 3�b�. Once such SCSs are obtained, they can be con-

FIG. 2. �Color online� �a� The average fidelity
Fave between the postselected output state of an
input single-photon state �1�, and the squeezed

single-photon state Ŝ�s���1�, for varying threshold
x0. The beam-splitter reflectivity is R=0.98, an-
cilla state squeezing is s=0.7, and target state
squeezing is s�=0.67. �b� The average Wigner
function Wave of the output state for Fave=0.99,
for x0=0.025, and for Ps=0.003.

FIG. 3. �Color online� �a� The average fidelity
Fave between the output state of the input two-
photon state, �2�, and the ideal SCS, for the vary-
ing threshold x0. The beam-splitter reflectivity is
R=1/2, the ancilla state squeezing is s=−0.37,
and the amplitude of the SCS is 
=1.1i. �b� The
average Wigner function Wave of the output state
for Fave=0.99, for x0=0.084, and for Ps=0.052.
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ditionally amplified for SCSs of larger amplitudes using only
linear optics schemes �9�.

We now consider the case of a Gaussian state, i.e., an
unknown coherent state, �
�, as the input. The postselection
scheme for Xr

+=0 transforms the coherent state as

D�
��0� → D��T�e2s�
+ + i
−��S�s���0� , �3�

where D�
�=exp�
â†−
*â� is the displacement operator.
Figure 1�b� illustrates that the squeezing and the displace-
ment transformation of the postselected output state in Eq.
�3� is dependent on the ancilla state squeezing, and that the
output state is a minimum uncertainty state independent of
the ancilla state squeezing. In the limit of ideal ancilla state
squeezing, the postselection scheme works as an ideal single-
mode squeezer for arbitrary input coherent states D�
��0�
→S�s��D�
��0�. In this case, the output squeezing is s�→
−ln�T� /2. We note that for input coherent states this scheme
provides an alternative method of squeezing to electro-optic
protocols presented in �10�.

EXPERIMENT

We experimentally demonstrated the principle of the post-
selection protocol using input displaced coherent states for a
realizable ancilla state squeezing. For the experiment, the
quantum states we considered reside at the sideband fre-
quency ��� of the electromagnetic field. We denote the

quadratures of these quantum states as X̂±= 	X̂±�+�X̂±, where

	X̂±� are the mean quadrature displacements, and where the

quadrature variances are expressed by V±= 	��X̂±�2�.
Figure 1 shows the experimental setup. We used a he-

milithic MgO:LiNbO3 below-threshold optical parametric
amplifier, to produce an amplitude squeezed field at 1064 nm
with squeezing of s=0.52±0.03, corresponding to a quadra-
ture variance of Vanc

+ =−4.5±0.2 dB with respect to the quan-
tum noise limit. More details of this experimental production
of squeezing is given in �11�. The displaced coherent states
were produced at the sideband frequency of 6.81 MHz of a
laser field at 1064 nm, using standard electro-optic modula-
tion techniques �11�. The postselection protocol goes as fol-

lows: the amplitude squeezed ancilla field X̂anc
± was converted

to a phase squeezed field by interfering it with the input

coherent state X̂in
± with a much larger coherent amplitude on

the beam splitter with a relative optical phase shift of � /2.
This optical interference yielded two output states that were
phase squeezed. The optical fringe visibility between the two
fields was vis=0.96±0.01.

We directly detected the amplitude quadrature of the re-

flected state X̂r
+ using a gate detector, which had a quantum

efficiency of det=0.92 and an electronic noise of 6.5 dB
below the quantum noise limit. The postselection could, in
principle, be achieved using an all optical setup, but we post-
selected a posteriori the quadrature measurements of the

transmitted state, X̂t
±, which were measured using a balanced

homodyne detector. The total homodyne detector efficiency
was hom=0.89, with the electronic noise of each detector
8.5 dB below the quantum noise limit. To characterize the

protocol, we also measured the quadratures of the input co-
herent state, X̂in

± , using the same homodyne detector. To en-
sure accurate results, the total homodyne detector ineffi-
ciency was inferred out of all quadrature measurements �11�.

The electronic photocurrents of the detected quantum
states �at a sideband frequency of 6.81 MHz� from the gate
and homodyne detectors were electronically filtered, ampli-
fied, and demodulated down to 25 kHz using an electronic
local oscillator at 6.785 MHz. The resulting photocurrents
were digitally recorded using a NI PXI 5112 data acquisition
system at a sample rate of 100 kS/s. We used computational
methods to filter, demodulate, and down sample the data, so
that they could be directly analyzed in the temporal domain.
From these data, we postselected the quadrature measure-

ments of the transmitted state, X̂t
±, which satisfied the thresh-

old criteria �Xr
+��x0. This postselection threshold was inde-

pendent of the input state and was experimentally optimized
depending on the beam-splitter reflectivity.

We characterized the efficacy of our protocol as an ideal
single-mode squeezer, by determining the fidelity of the post-
selected output state with a target state that is an ideal
squeezed operation of the input state �Eq. �3��. The Wigner
function of this ideal squeezed input state is given by
Wout�
 ;s��, where s→	 and s�→−ln�T� /2. In this case, the
fidelity is given by F�Xr

+�=��−	
	 d2
Wexpt�
 ;Xr

+�Wout�
 ;s��,
where Wexpt�
 ;Xr

+� is the Wigner function of the postselected
output state. From this expression, the average fidelity Fave
for a postselection threshold x0 can be calculated. This cor-
responds to unity fidelity Fave=1 in the limit of ideal ancilla
state squeezing and Xr

+=0. In the experiment, the input state
was a slightly mixed state due to inherent low-frequency
classical noise on the laser beam, with quadrature variances
of Vin

+ =1.13±0.02 and Vin
− =1.05±0.02, with respect to the

quantum noise limit. Hence, we calculated the fidelity of the
postselected output state with an ideal squeezed transform of
the experimental input state. Figure 4 shows the classical
fidelity limit Fclas, which signifies the highest fidelity achiev-
able when the interaction of the ancilla and the input coher-
ent state yields no entanglement. Exceeding this classical
fidelity limit can only be achieved using quantum resources.

FIG. 4. �Color online� Experimental fidelity for varying ampli-
tudes �
+� of the input coherent state, for R=0.75 and x0=0.01. Dark
gray region: classical fidelity limit for an ancilla vacuum state;
Light gray region: classical fidelity limit. Dot-dashed line: calcu-
lated theoretical prediction of experiment, with experimental losses
and inefficiencies.
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Figure 4 shows the experimental fidelity for varying input
states �
+�
�	X̂in

+ ��. For a beam-splitter reflectivity of R
=0.75, we achieved a best fidelity of Fave=0.90±0.02 for an
input state �
+�=0.18±0.01, which exceeds the maximum
classical fidelity of Fclas=4/5=0.8. This postselected output
state had quadrature variances of Vout

+ =4.70±0.11 and Vout
−

=0.51±0.01. The mean quadrature displacement gains, g±

= 	X̂out
± � / 	X̂in

± �, were measured to be g+=0.71±0.16 and g−

=0.50±0.06. This is compared to the ideal case of the perfect
ancilla state squeezing, where the ideal theoretical gains are
gideal

+ =2 and gideal
− =1/2. The phase gain was controlled by

the beam-splitter transmittivity, while the amplitude gain was
less than the ideal case due to finite ancilla state squeezing,
finite postselection threshold, and experimental optical
losses.

The quantum nature of the postselection protocol is dem-
onstrated by the experimental fidelity results that exceed the
classical fidelity limit in Fig. 4. For large input states �
+�, the
experimental fidelity was less than the theoretical prediction
due to electronic detector noise and the finite resolution of
the data acquisition system, resulting in a smaller postse-
lected output state �
+� and a corresponding decrease in the
experimental fidelity. Figure 5�a� illustrates how the experi-
mental fidelity of a postselected state transitions to the quan-
tum fidelity region by decreasing the postselection threshold
�and corresponding probability of success�.

We also characterized the experiment in terms of the pu-
rity of the postselected output state, defined as P=tr��out

2 �. In
the case of Gaussian states, the purity of the output state can
be expressed as P= �Vout

+ Vout
− �−1/2. In the ideal case of a loss-

less experiment and a postselection threshold Xr
+=0, the pro-

tocol is a purity preserving transform, independent of the
input state and the amount of squeezing of the ancilla state.
In the experiment, as the input states are slightly mixed, we
calculate the purity of the postselected output state, normal-
ized to the purity of the input state, which is given by
Pnorm= �Vout

+ Vout
− �−1/2 / �Vin

+ Vin
− �−1/2. Figure 5�b� shows the ex-

perimental purity of the postselected output state for varying
input states, which illustrates how the purity is improved via
the postselection process. For a beam-splitter reflectivity of
R=0.75, we achieved a best purity of Pnorm=0.81±0.04 for
an input state of �
+�=2.03±0.02. Figure 5�b� shows that the
purity of the postselected output states was approximately
independent of the input states, for a large range of input
states.

We also implemented our scheme for a beam-splitter re-
flectivity of R=0.5. In this case, we measured a best fidelity
of Fave=0.96±0.01, which exceeded the maximum classical
fidelity of Fclas=�8/3�0.94, and measured a best purity of
Pnorm=0.80±0.04.

In summary, we have investigated a continuous-variable
conditioning scheme based on a beam-splitter interaction,
homodyne detection, and an ancilla squeezed vacuum state.
The conditional evolution of quantum systems based on
continuous-variable measurements of the ancilla state are of
particular interest as they can yield from input Fock states,
non-Gaussian states, which have applications in the field of
quantum information. Further, for Gaussian states, this tech-
nique provides an alternative to continuous electro-optic
feed-forward schemes. We theoretically showed that our con-
ditional postselection scheme yields a high-fidelity squeezed
single-photon and a superposition of coherent states from
input one- and two-photon Fock states, respectively, for re-
alizable squeezing of the ancilla state. We experimentally
demonstrated the principles of this scheme using coherent
states, and measured experimental fidelities that were only
achievable using quantum resources.

We thank the Australian Research Council for financial
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